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Abstract. The problem of maximizing a convex function on a so-called simple set is considered. 
Based on the optimality conditions [19], an algorithm for solving the problem is proposed. This 
numerical algorithm is shown to be convergent. The proposed algorithm has been implemented and 
tested on a variety of test problems. 
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1. Introduction 

In this paper we consider the problem of maximizing a convex function on a subset 
D C Rn: 

f ( x )  -+ max, x E D. (1) 

The first work devoted to the solution of the problem of  maximizing a convex 
function on a convex set appeared more than twenty years ago [21]. This prob- 
lem belongs to a class of  global optimization problems that have many practical 
applications, including allocation problems and problems on the optimal regime 
of power systems [10,16]. In addition, the problem of the global minimization of  
the difference 9 - h of  two convex functions g and h can be transformed into 
problem (1) with a suitable convex set D [5]. 

There are many theoretical and numerical papers [2,5,6,7,8,13,14,18,19,22,23] 
devoted to the solution of  problem (1). When f (z) is convex, quadratic algorithms 
are described in [9,20]. This paper is organized as follows. In Section 2, we 
derive the optimality condition for problem (1) and we introduce a definition of  
a "simple" set. In Section 3, we present an algorithm to solve the problem of 
maximizing a convex function on a "simple" set and we show its convergence. In 
Section 4, we present some computational results obtained with our algorithm on 
test problems. 
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2. Formulation of the Problem and Constructive Form of Optimality 
Conditions 

We consider the problem 

f ( x )  --+ max, x E D C R n, (2) 

where f : R ~ -+ R is a convex and twice differentiable function and D is an 
arbitrary subset of R n. 

It is well known [20] that, if the function f is nonconstant, then the optimality 
conditions for problem (2) will be given by the following theorem: 

THEOREM 1. A point x* is a solution of problem (2) if and only if the following 
condition holds 

VB" f ( y )  = f(x*)  
( i f ( y ) , x - y )  < O, V x E D .  (3) 

(Here and in the following (,) denotes the scalar product of  two vectors.) 
Proof. Necessity. Assume that x* is a solution of problem (2). Let the points x 

and y be such that 

Vy E R n : f (y )  = f(x*) ,  x E D. 

Then, by the convexity of f ,  we have 

0 >_ f ( x )  - f (x*)  = f ( x )  - f ( y )  >_ f ' ( y ) , x  - y > .  

Sufficiency. Suppose that x* is not a solution for problem (2), i.e., 

3u c D :  f (u )  > f(x*).  

Now we introduce the closed and convex set: 

C = {x • R n / f ( x )  <_ f (x* )} .  

Note that u ¢ C. Then there exists the projection of the point u on C, i.e., 

~ y  e c .  Ily - ~*11 = in f  IIx - < l -  
xCC 

By construction we have: 

lly - ull > 0. (4) 

On the other hand y can be considered as a solution of the following convex 
programming problem: 

g ( x )  = all lz  - ull 2 - +  rain,  * e C.  
z 
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Let us write down the optimality conditions for this problem at the point y as 
follows: 

9),0>_0, ),>_0, ) , 0 + ) , > 0  
),od(v) + ),f '(v) = o (5) 
),(f(y) - f(x*)) = O. 

If ),0 = 0 then (5) implies that ), > 0, f ' ( y )  = 0 and f ( y )  = f ( x* ) .  
This is impossible because it contradicts the statement that the function f is 

nonconstant. The case ), = 0 is also impossible, because 9~(y) = 0 and it contradicts 
(4). 

Taking into account that g~ (y) = y - u from (5) we have: 

) , > o ,  
: (y)  = :(x*) 
( f ' ( y ) ,  u - y) > O, 

which contradicts condition (3). 
This contradiction implies that the assumption that x* is not a solution of 

problem (2) must be false. This completes the proof. [] 

We introduce the following definition. 

DEFINITION 1. A set D is a simple set if the following conditions hold: 
(a) D is compact. 
(b) The problem of maximizing a linear function on D is solvable using a 

'simple method'. 

We say that a method is simple if involves the use of a simplex method or the use 
of a method that gives an analytical solution to the problem of maximizing a linear 
function on D. 

In addition, throughout this paper we assume that D is simple and also that the 
function f is strongly convex. 

Let f* denotes a global maximum of problem (2): 

f* A ma~ f ( = x) 

We define the auxiliary function II(y) in the following way: 

II(y) = m ~ ( f ' ( y ) ,  x - y) for all y E R n. 

We present some of properties of the function II(y) without proof. 
Detailed proofs are given in [20]. 

LEMMA 1. H(y) is continuous on R n. 
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LEMMA 2. There exists the directional derivative of  II(y) at y in the direction 
h E R n which is given by the following formula: 

-- ( f " ( y ) h , z )  - " + - -  ( f  ( y ) y  f'(y),h), 

where z is such that: 

( f ( y ) , z )  = ma~(y ' (y ) ,  x). 

Let us introduce the function O(x) as follows: 

O ( x ) =  max H(y). 
f ( y ) = f ( x )  

Note that, since f (x) is strongly convex, then 

O(x) < + c ~  for all x E R  n. 

Using O(x), we may show the following result. 

THEOREM 2. Let the function f be nonconstant on R n and x ° E D. I fO(x °) <_ 0 
then the point  x ° is a solution o f  problem (2). 

Proof  The proof is an obvious consequence of the inequality 

( f ' ( y ) , x  - y) _ ma~( f ' (y ) ,x  - y) _< 0(x °) _< 0, 

which holds for all x and y such that: x E D,  f ( y )  = f ( x ° ) .  
In fact by Theorem 1 we have that x ° is a solution of problem (2) and the proof 

is complete. [] 

Theorem 2 is used to verify the optimality condition (3). 

3. Convergence of the Algorithm 

In this section we present an algorithm to solve problem (2). In order to introduce 
our algorithm, we have to prove the following result. 

THEOREM 3. Let a sequence x k C R n be such that 

f ( x  k) > f ( x  k - l )  > . . .  > f(x °) and x ° ~ arg rain f ( x )  
x E R  ,~ 

then 3~ > 0 : IIf ' (zk)ll  ___ ~ foreach k = 0, 1,2 ... .  
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Proof. Since f is strongly convex on R n there exists a positive constant J such 
that, for all x, g E R n and for all a E [0, 1], the following inequality holds: 

f ( a x  + (1 - c~)y) < a f ( x )  + (1 - a) f ( y )  - a(1 - a)Jl lx  - yli 2. (6) 

Now let x .  be the unique global minimizer of f ( x )  on Rn: 

f ( x . )  = min f ( x )  
x E R  ~ 

Then it is clear that x k ~ x .  for each k = 0, 1, 2 , . . . , .  
From the convexity of  f we have: 

f ( x ) - f ( y ) < ( f ' ( x ) , x - y )  for all x, y E R  n. (7) 

If we substitute x = x k, y = x .  and t~ = ½ into formulas (6) and (7) we 
obtain: 

¼Jllx k x.ll 2 _ < ½ [ f (  x k ) - f  ~ + 

+ 1  s/½  + <_ 

+ ¼ ( f ' ( x . ) , x .  - xk) = ¼(f,(~k) _ S,(x,) ,  ~k _ ~.).  

Taking into account that f ' ( x . )  = 0 we have 

JIIx k - z.II u _< ( f ' ( x k ) , x  k -- x . )  <_ IIf'(xk)llllz k - x.ll. 

Thus we get: 

Jllx k - x , I I  <_ IIf'(xk)ll foreach  k = 0 , 1 , 2  . . . .  (8) 

Moreover, by using the formulas (7) and (8) we find that: 

< f ( x  k) - f ( x . )  < ( f ' ( x k ) , x  k -  x . )  < IIf'(xk)llllx k - x * l l _  l l l f ' ( xk ) l l2  0 

for all k = 0, 1, 2 . . . .  
Since the sequence { f  (x k) } is strictly monotonically increasing, then the fol- 

lowing inequality holds: 

0 < J ( f ( x  °) - f ( x . ) )  <_ Ilf'(xk)ll 2 

for each k = 0, 1 ,2 . . . .  

Consequently, choosing ~ ---- ( J ( f ( x  °) - f ( x . ) ) )  1 the assertion is proved. [] 

A L G O R I T H M  1. 
Step 1. Choose x ° E D such that x ° ~ arg min~eR,~ f ( x ) .  Set k = 0 
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Step 2. To determine the value of O(x k) solve the following constrained global 
optimization problem: 

n (y )  ~ max, f (y)  = f(xk).  

Let yk be a solution of this problem, i.e., 

0( k) = n ( y k )  = ma (y,(yk), • _ yk) .  

Moreover, the point x k+l will be considered as a solution of the problem: 

(f,(yk), x) --+ max, x E D. 

It is clear that: 

H(yk)  = ( f , ( y k ) ,  xk+ l  _ yk).  

Step 3. If O(x k) _< 0 then set x* = x k and stop. 
Step 4. Otherwise, set k -- k + 1, and go to step 2. [] 

Now we want to prove that algorithm 1 converges to a global maximum of prob- 
lem (2). 

THEOREM 4. The sequence of points {x k} produced by the above mentioned 
algorithm is a maximizing sequence of problem (2), i.e., 

lim f ( x  k) = f* 
k---+ to  

and all the limit points of the sequence { x k } are global maximizers of problem (2). 
Proof. Note that from the construction of {z k } we have 

x k C D  and f ( x  k) <_f* for each k = 0 , 1 , 2  . . . .  

Without loss of generality let 

O(x k) > 0  for all k = 0 , 1 , 2  . . . .  (10) 

In fact, otherwise, there exists k such that O(x k) < O. 
Then, by Theorem 2, we can conclude that x k is a solution of problem (2) and 

the proof is complete. Suppose, to the contrary, that {x k} is not a maximizing 
sequence of problem (2), i.e., 

lim sup f ( x  k) < f* = f(x*). (11) 
k----~oo 

Where x* is a global maximizer of problem (2). 
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First we show that the sequence {f(zk)}  is strictly monotonically increasing. 
By the definition of 0(z k) we have 

O(x k) = H(yk) = (f,(yk),xk+l _yk)  > 0. (12) 

By the convexity of f this implies that 

f (xk+l )  _ f ( x  k) = f (xk+l )  _ f(yk) > (f,(yk), xk+l __ yk) > O .  (13) 

Hence, we obtain: 

f ( x  k+l) > f(xk) ,  forall  k=O,  1,2 . . . .  

On the other hand the sequence {f(xk)}  is bounded from above by the value of 
f*, so that there exists a limit A: 

lim f ( x  k) = A. 
k--+e¢~ 

Then, recalling (12) and (13), we obtain 

lim O(x k) = O. 
k--~oo 

Now we introduce the following closed and convex sets: 

Ck = {x E Rn[f(x)  < f (xk)}  for all 

It is clear that x* ~ Ck, then there exists the projection of the point x* on Ck, such 
that: 

3u k E C k ' l l u  k - x * l l =  inf I Ix -x* l l  
:cECk 

and 
I1~ k - x*l l  > 0.  (14) 

We also can consider u k as the solution of the following convex programming 
problem: 

g(x) = 2 1 I x  - x*ll  2 ~ min, x E Ck. 

Then the optimality condition for this problem at the point u k looks like: 

{ ~o > 0, ~k ___ o, ~ + ~  ¢0 
)~09'(uk)+)~kf'(uk)=O for all k = 0, 1,2, . . . .  (15) 
Ak(f(u k) -- f (xk))  = 0 

Now we shall show that )~0 ¢ 0 and )~k ¢ 0. It fact, if )~0 = 0 then by (15), 
it follows that )~k > 0 and f~(u k) = O, f (u  k) = f(xk).  This contradicts that 
x k ¢ arg minz~R,~ f (x )  for each k -= 0, 1,2, . . . .  
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Analogously, we show that Ak > 0. 
Since f ( u  k) ¢ O, the case Ak = 0 is also impossible so that we can put A0 = 1 

and Ak > 0. 
Then we can write (15) as follows: 

Thus we have 

u k - x* + Akf '(u k) = O. (16) 

~k  - I luk - x*l l  ( 1 7 )  
U , ( u k ) [ [  " 

On the other hand, by the definition of O(xk), it follows that: 

( f ' ( ~ ) ,  x* - ~k) _< 0(xk). (18) 

Using (16), (17) and (18) we have: 

I I f ' (uk)Hllu k - z*ll <_ O(xk) .  (19) 

From the construction of {x k } the sequence {u k } is such that: 

f ( x  k) = f ( u  k) and f ( u  k) > f ( u  k-l)  for all k = 0 , 1 , 2 ,  . . . .  

Then, by Theorem 3, we obtain 

3~ > O" ]]f'(uk)]l >_ 5 foreach k = 0, 1,2, . . . .  

From (19), it follows that: 

o _ 611~, k - ~* II --< o(~k) .  

Taking into account that l imk_~  O(x k) = 0 we have: 

lim u k = x*. 
k - - + ~  

By continuity of f on R n we conclude that 

lim f ( x  k) = lim f ( u  k) = f(x*).  (20) 
k ~ c o  k---r oo 

This contradicts (11). This contradiction implies that the assumption that {x k } 
is not a maximizing sequence of problem (2) must be false. 

Since D is a compact set, there exists a convergent subsequence which we 
re-lable {xk}, such that l i m k ~  x k ---- ~. By (20), we obtain: 

lim f ( x  k) = f(~.) = f* 
k--+oo 
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which completes the proof of the theorem. 
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[] 

4. The Numerical Experiments 

In this section we consider problem (2) with a quadratic objective function. The 
problem considered has the form: 

1 
f ( x )  = ~(Ax,  x) -+ max, x e D c R  n, 

where A is a symmetric positive definite matrix and the set D is simple. 
We note that the efficiency of the algorithm proposed above depends on the 

solution of problem (9). In order to solve problem (9) we can use classical methods, 
such as a penalty function method [1], a method of generalized gradients [12], or a 
method of nondifferentiable optimization [3]. Since f ' (x )  = Ax in our case, then 
the auxiliary function II(y) takes the following form: 

II(y ) = max(Ay, x) - ( A y ,  y ) .  
xCD 

Thus we can write problem (9) as follows: 

YI(y) --+ max, f (y)  -- f (xk) ,  

which is reduced to the problem of maximizing the convex function qo(y)" 

1 A cp(y) = mz a~{Ax, y ) --+max, -~( y,y)  = oLk, 

where o~k = l (Axk, x k) 
We can write this last problem in the form 

~(y) --+ max, (Ay, y) <_ 2O~k, 

because the function (p(y) attains its maximum on the boundary of the set of 
equality constraint: (Ay, y) = 2o~k. This problem may then be solved by the 
method proposed in [13]. 

To check the efficiency of the algorithm proposed above, some test problems 
have been considered. The proposed algorithm has been implemented on an IBM 
PC/386 microcomputer in Pascal 6.0. For example, we considered the problems 
of maximizing a quadratic convex function over the spheres, parallelepipeds and 
polyhedrons. The problems (P1)-(P5) were taken from [15,16,2,8]. The list of the 
test problems considered is the following: 

(P1) 
f (x )  = 2x21 + 4 x 2 2 -  5xlx2 -+ max 
0 <: Xl <: 1, 0 < _ x 2 < _ l  
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(P2) 
f ( x )  = Xl 2 + x2 2 + x3 2 + (x3 - x 4 )  2 --~ max 
- 2 . 3  < z i  <_ 2.7, i = 1 , 2 ,3 ,4  

(P3) 
f ( x )  = exp (2~1-z2)2 +Xl 2 + x~ - 4Xl - 4x2 --+ max 
O < x l <  1, - 2 < x 2  < 3. 

(P4) 

x + x 2 --+ max, 

4xl + 7:c2 _< 28 
21 - 522 < 5 
xl 2 O, z2 >_ 0 

(PS) 

( Z l  - -  1 .2)  2 -k- (X2 - -  0 . 6 )  2 - +  m a x  

- 2 x i  + x2 <_ 1 
xl +x2<_4 
0 . 5 2 1  - - Z  2 -< 1 
O_<zl  < 3 ,  0 -< :c2 -< 2 

(P6) 

x +222 -+ max 

-5x~ + 13x2 < 72 
I l x l  - 7 x 2  < 36 
5xl - 9x2 < 28 
- l l x l  + 9x2 < 56 

(P7) 

4(xl - 1) 2 n t- 25(22 - 2) 2 -+ max 
8.3xl + 20.5x2 < 170,15 
- -7 .5cc  I n t- 18:r 2 -< 135 
- l O . 5 x l  + 7.7x2 _< 80.85 
-3 .721 - 10.2x2 _< 37.74 
- 2 . 7 x i  - 13:c2 _< 35.1 
4.5xl - 7 x 2  -< 31.5 
- 2 0 < x i  < 2 0 ,  - -20<x2<__20 .  

Further, we considered problems 

{ Ilxlt: ma× 
- ( n -  i + 1) _< x i  < n + 0.5i (P8) i = 1 , 2 , . . . , n  
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t]xll ~ max, x e B 
(P9) B = {x  e Rnlllx - ~11 ~ r} ,  ~ ¢ o, T > o 

(PlO) 
{ ~i~=l(n - 1 - O.1i)x 2 --+ max 

- 1 - i < x i < _ l + 5 i ,  i = 1 , 2 , . . . , n  

1) ~ IIx - cll 2 ~ max (pl [ - i  ___ x~ _ [~], i = 1 , 2 , . . . , n  

(P12) f ( x )  = (Cx ,  x)  ---+ max, x C 1-I, 

w h e r e I I = { x e R n / - ( n - i + l ) _ x i < _ n + 0 . 5 i ,  i = l , 2 , . . . , n }  

C = 

n n - I n - 2 . . .  2 1 

n - 1  n n - 1  . . .  3 2 

. . . .  • ° , ° o  , ° ,  , * o  . ~ ,  

, , ,  , , ,  , , ,  . . . . . . .  , o  

• , ,  , . . . . .  ° . ,  ° ° ,  ° , ,  

1 2 3 . . . n - l n  

The results of  the numerical experiments for these problems are shown in Table 
I. 

5. Conclusions 

In this paper we have considered a class of global optimization problems. We 
have proposed an algorithm for the solution of the problem of maximizing a 
convex function on a so-called 'simple' set. This algorithm has been shown to be 
convergent. The proposed algorithm was tested on a variety of test problems. Our 
algorithm was implemented in Pascal 6 and run on an IBM PC 386 computer. 
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TABLE I. 

R. ENHBAq- 

Problems dimension of initial value of f global 
maximum of f 

the problems n 

Computing 
(min:sec) 

time 

P1 2 2 4 

P2 4 27 46.87 

P3 2 8965.2 8886119.52 
P4 2 16 42.0974 
P5 2 2.45 3.4 

P6 2 98 162 

P7 2 549.08 871.947 
P8 10 385 1646.25 

P8 30 1612 43313.75 
P8 70 7000 546148.75 
P9 50 100 3025 
P9 70 140 4235 
P9 100 25 625 

P10 3 5.4 721.4 

P10 10 84.5 83712 
P10 30 823.5 6440531 

P10 60 8357 101506747 

P10 80 5996 319560716 
P10 100 9395 778330545 

P10 150 21217.5 3927744505 
P l l  3 12.5 50 
P l l  5 103.75 165.25 
P l l  10 640 1297.75 
P l l  20 1280 11219 
P l l  50 3200 187732.75 
P l l  70 4480 522700.25 

P l l  90 5760 1120167.75 

P l l  100 6400 1541089 

P l l  200 12800 12494676.5 

P l l  400 25600 100639351.5 
P l l  500 32000 196830439 
P12 2 12.8 45.5 
P12 5 85 3604 
P12 10 670 109333.5 
P12 30 18010 25766625.5 
P12 40 42680 108196334 
P12 70 228690 1767930209 
P12 80 341360 3444342668 

P12 90 486030 6203290501.5 
P12 99 646899 9986343609 

0:3.71 
0:3.74 

0:4.21 

0:5.29 
0:5.45 

0:5.18 

0:5.33 
0:15 
0:2.57 
0:3.56 

0:4.79 
0:5.1 
0:8.14 

0:1.8 

0:1.12 
0:4 
0:21 
0:47 

1:30 

4:56 
0:1 

0:2 
0:1.1 
0:2 
0:9 
0:20 

0:27 

0:34 
0:43 

2.20 
4:32 
0:1 
0:81 
0:3 
1:12 
2:33 
2:45 
3:50 

5:26 
7:26 

1. Results of the numerical experiments for the problems (P1)-(P12). 
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